
Eur. Phys. J. B 13, 513–525 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We consider a symmetric Anderson impurity model with a soft-gap hybridization vanishing at
the Fermi level, ∆I ∝ |ω|r with r > 0. Three facets of the problem are examined. First the non-interacting
limit, which despite its simplicity contains much physics relevant to the U > 0 case: it exhibits both
strong coupling (SC) states (for r < 1) and local moment states (for r > 1), with characteristic signatures
in both spectral properties and thermodynamic functions. Second, we establish general conditions upon
the interaction self-energy for the occurence of a SC state for U > 0. This leads to a pinning theorem,
whereby the modified spectral function A(ω) = |ω|rD(ω) is pinned at the Fermi level ω = 0 for any U
where a SC state obtains; it generalizes to arbitrary r the pinning condition upon D(ω = 0) familiar in
the normal r = 0 Anderson model. Finally, we consider explicitly spectral functions at the simplest level:
second order perturbation theory in U , which we conclude is applicable for r < 1

2 and r > 1 but not
for 1

2
< r < 1. Characteristic spectral features observed in numerical renormalization group calculations

are thereby recovered, for both SC and LM phases; and for the SC state the modified spectral functions
are found to contain a generalized Abrikosov-Suhl resonance exhibiting a characteristic low-energy Kondo
scale with increasing interaction strength.

PACS. 72.15.Qm Scattering mechanisms and Kondo effect – 75.20.Hr Local moment in compounds and
alloys; Kondo effect, valence fluctuations, heavy fermions

1 Introduction

The Kondo effect, whereby an impurity spin is quenched
by coupling to the low-energy excitations of a non-
interacting metallic host, has long occupied a central role
in the study of magnetic impurities (see e.g. [1]). The effect
is of course normally regarded as being dependent upon a
metallic host, with low-energy and hence low-temperature
impurity properties controlled by the non-vanishing host
density of states at the Fermi level, ω = 0, and essentially
independent of the details of host band structure.

But what if the host exhibits semi-metallic character,
with a spectrum whose low-energy behaviour exhibits a
soft-gap at the Fermi level, ρhost ∝ |ω|r with r > 0?
There are quite a number of experimental candidates for
such behaviour, ranging from semiconductors whose va-
lence and conduction bands touch at the Fermi level [2],
through heavy Fermion superconductors [3], to various
two-dimensional systems including graphite sheets [4] and
quasi-one-dimensional metals described by a Luttinger
model [5].

The question above was first posed by Withoff and
Fradkin [6], who studied the soft-gap Kondo model us-
ing a combination of “poor man’s” scaling and a large-
N mean-field theory (with N the impurity degeneracy).
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Since then, there has been much study of both the Kondo
and the corresponding Anderson impurity models, in par-
ticular via scaling [6,7], large-N expansions [6,8,9] and
the numerical renormalization group (NRG) [7,10–13]. All
these techniques, whether for the soft-gap Anderson or
Kondo models, show the existence of two distinct types of
ground state, between which in general a nontrivial zero-
temperature phase transition occurs at a finite value of the
host-impurity coupling (or, equivalently in the Anderson
model, at a finite value of the impurity on-site interaction,
U): a weak coupling or local moment (LM) state in which
the impurity spin remains unquenched; and a strong cou-
pling (SC) state in which a Kondo effect is manifest, and
whose properties — in particular for the so-called sym-
metric strong coupling state considered here — have been
argued to represent a natural generalization of Fermi liq-
uid physics (see especially [13]).

NRG studies in particular have devoted considerable
attention to the spin- 1

2 (N = 2) particle-hole symmet-
ric case, including thermodynamic [10–13] properties and,
for the Anderson model, impurity spectral functions [12].
It is the symmetric spin- 1

2 soft-gap Anderson model we
consider here, with aims that are modest, and threefold.
First, to consider briefly the non-interacting limit, U = 0;
second to establish rather general conditions upon the ex-
istence of a SC state at finite-U ; and finally, to examine
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the problem explicitly at the simplest possible level —
straight second-order perturbation theory in U .

There are two reasons for considering the non-
interacting limit, simple though it is. First, and in contrast
to the “normal” Anderson model (r = 0), its behaviour
is nontrivial and exemplifies much physics relevant to the
interacting problem. An understanding of the impurity
single-particle spectrum, D0(ω), is sufficient to study the
non-interacting limit, since both “excess” thermodynamic
properties induced by addition of the impurity, and local
properties such as the impurity susceptibility, follow from
a knowledge of it. As shown in Section 3, both LM and
SC states arise in the U = 0 limit, with characteristic
and distinct signatures in both spectral and thermody-
namic functions, as indeed known in part from the work of
reference [13]. LM states alone are found to occur for
r > 1 and SC states for r < 1, whereas finite-U NRG
results [12,13] for the symmetric model show that LM
states alone occur for r > 1

2 — an important contrast
whose implications are considered in Section 5. The sec-
ond reason for considering the non-interacting limit is pro-
saic: a knowledge of it underpins finite-order perturbation
theory in U , as considered in Section 5.

In Section 4, focusing on the finite-U impurity spectral
function D(ω), we establish general conditions upon the
interaction self-energy for the occurence of a SC state,
from which follow in turn two results. First, that the
low-frequency behaviour of the single-particle spectrum
is D(ω) ∼ |ω|−r, which is precisely the spectral signature
of the SC state found in NRG studies [12]. Second, and
relatedly, that interactions have no influence in renormal-
izing the low-ω asymptotic behaviour of D(ω). In conse-
quence, one obtains a conservation on A(ω) = |ω|rD(ω)
at the Fermi level, ω = 0: for any r where a SC state ex-
ists, A(ω = 0) is pinned at its non-interacting value for all
U , a result that generalizes to arbitrary r the correspond-
ing condition familiar for the r = 0 Anderson model (see
e.g. [1]).

In contrast to the r = 0 Anderson model where the
predictions of perturbation theory in U about the non-
interacting limit are well known (see e.g. [1]), the implica-
tions — and, indeed, general applicability — of a low-order
perturbative treatment are not obvious for the soft-gap
problem, and are considered in Section 5 where we focus
on the impurity spectral function. For r > 1 second-order
perturbation theory is found to recover the characteristic
low-ω spectral signature of the LM state found in NRG
studies [12], viz. D(ω) ∼ |ω|r; and the resultant single-
particle spectra are investigated in some detail. For r < 1

2
we find the SC state is indeed perturbatively stable upon
increasing U from zero, and that the general conditions of
Section 4 for a SC state are satisfied at the second-order
level; the resultant modified spectral functions A(ω) are
also shown to bear a striking resemblance to that for the
normal Anderson model, r = 0, exhibiting in particular
the emergence with increasing U of a characteristic low-
energy Kondo scale. For 1

2 < r < 1 by contrast, we argue
that finite-order perturbation theroy in U about the non-
interacting limit is simply inapplicable.

There is a second, “hidden” reason why we consider
low-order perturbation theory: to illustrate its limitations,
despite its strengths, even for r < 1

2 where the SC state is
perturbatively continuable from the non-interacting limit.
It is our belief that to describe analytically much of the un-
derlying physics of the soft-gap Anderson model — and
in particular to capture the transition between LM and
SC (or generalized Fermi liquid) phases which renders the
problem of generic interest — requires, or at least in-
vites, a new and inherently non-perturbative theoretical
approach. We will turn to one such theory in a subse-
quent paper [14], for which the present work is in part a
forerunner.

2 Background

With the Fermi level taken as the origin of energy, the
Hamiltonian for the spin- 1

2 Anderson model is given in
standard notation by

Ĥ = Ĥhost + Ĥimpurity + Ĥhybridization (2.1a)

=
∑
k,σ

εkn̂kσ +
∑
σ

(εi +
U

2
n̂i−σ)n̂iσ

+
∑
k,σ

Vik(c†iσckσ + c†kσciσ) (2.1b)

with εk the host dispersion, Vik the hybridization and εi
the impurity level; for the symmetric case considered here,
εi = −U2 with U the on-site interaction.

We consider the zero-temperature single-particle im-
purity Green function, G(t) = −i〈T{ciσ(t)c†iσ}〉, with
G(ω) expressible as

G(ω) = [ω + iηsgn(ω)−∆(ω)−Σ(ω)]−1 (2.2)

where the limit η → 0+ is henceforth understood. Here
∆(ω) is the hybridization function given by

∆(ω) =
∑
k

|Vik|2
ω − εk + iηsgn(ω)

(2.3a)

= ∆R(ω)− isgn(ω)∆I(ω) (2.3b)

and we consider throughout a symmetric hybridization

∆(ω) = −∆(−ω) (2.4)

(whose particular form is specified in Sect. 2.1). From
particle-hole symmetry the Fermi level remains fixed at
ω = 0 ∀ U ≥ 0, whence the impurity charge ni =∑
σ〈n̂iσ〉 = 1 ∀ U ; and the interaction self-energy Σ(ω)

is defined to exclude the trivial Hartree contribution of
(U/2)ni = U/2, which cancels εi = −U/2. Σ(ω) may like-
wise be decomposed as

Σ(ω) = ΣR(ω)− isgn(ω)ΣI(ω) (2.5)
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and the real parts of Σ or ∆ follow directly from the
Hilbert transform

FR(ω) =
∫ ∞
−∞

dω1

π
FI(ω1)P

(
1

ω − ω1

)
(2.6)

with F = Σ or ∆ as appropriate.
The single-particle impurity spectrum D(ω) =

− 1
π sgn(ω)ImG(ω) follows directly as

D(ω) = Dp(ω) +Db(ω) (2.7)

where

Db(ω) =
[∆I(ω) +ΣI(ω)]π−1

[ω −∆R(ω)−ΣR(ω)]2 + [η +∆I(ω) +ΣI(ω)]2

(2.8a)

and

Dp(ω) =
ηπ−1

[ω −∆R(ω)−ΣR(ω)]2 + [η +∆I(ω) +ΣI(ω)]2
·

(2.8b)

Here Db(ω) refers to continuum (or “band”) excitations,
while Dp(ω) allows for the possibility of discrete states
reflected in pole contributions.

The change in the density of states of the system due
to addition of the impurity, ∆ρ(ω), will also prove central
to the subsequent analysis. It is given by

∆ρ(ω) = D(ω)
[
1− ∂∆R(ω)

∂ω

]
− 1
π

ReG(ω)
∂∆I(ω)
∂ω

(2.9)

and is calculable directly once the impurity D(ω) is
known. Note that equation (2.9), while commonly derived
explicitly for the non-interacting case (see e.g. [1]), is read-
ily shown to hold generally for all U . From equation (2.7),
∆ρ(ω) likewise separates into “band” and “pole” contri-
butions,

∆ρ(ω) = ∆ρp(ω) +∆ρb(ω) (2.10a)

where in particular

∆ρp(ω) = Dp(ω)
[
1− ∂∆R(ω)

∂ω

]
. (2.10b)

2.1 Hybridization function

The hybridization function we consider, ∆I(ω)
(= ∆I(−ω)), is given by

∆I(ω) =

∆0

(
|ω| − δ

2

)r
:
δ

2
< |ω| < D +

δ

2
0 : otherwise

(2.11)

with r > 0. While a pure power-law hybridization is natu-
rally not realistic on arbitrary energy scales, it captures in

the simplest fashion the requisite low-ω behaviour; more-
over, as for the r = 0 Anderson model, one expects im-
purity properties to be controlled primarily by the low-ω
behaviour and to be largely independent of the details of
host band structure. In general the hybridization thus con-
tains a gap of magnitude δ, in which lies the Fermi level
ω = 0; the “normal” flat-band Anderson model is recov-
ered as a special case of equation (2.11) with r = 0 = δ.
There are four energy scales in the problem, namely δ,

∆
1

1−r
0 , D (the bandwidth) and U ; we choose to rescale in

terms of ∆
1

1−r
0 , defining for later purposes

ω̃ =
ω

∆
1

1−r
0

, D̃ =
D

∆
1

1−r
0

, Ũ =
U

∆
1

1−r
0

· (2.12)

From the Hilbert transform equation (2.6), ∆R(ω) =
−∆R(−ω) is given by

∆R(ω) =
2ω∆0

π

∫ D

0

dω1
ωr1

ω2 −
(
ω1 + δ

2

)2 (2.13)

where a principal value is henceforth understood. Notice
from this that the wide-band limit D→∞, as commonly
employed for the normal Anderson model r = 0 = δ, can
be taken only for r < 1.

For the gapped case, δ > 0, we shall need solely the
behaviour of ∆R(ω) for frequencies |ω| � δ

2 inside the
gap. This is given from equation (2.13) by

∆R(ω) = −ω 2∆0

π

[
δ

2

]r−1

B(δ; r) +O

[(
2ω
δ

)3
]

(2.14a)

where B(δ; r) ≥ 0 is given by

B(δ; r) =
∫ 2D/δ

0

dz
zr

(1 + z)2 · (2.14b)

Our primary focus in Sections 4 and 5 will be the “soft
gap” case, δ = 0, where ∆I(ω) = ∆0|ω|r. For this case,
rescaling of equation (2.13) yields

∆R(ω) = sgn(ω)∆0|ω|r
2
π

∫ D/|ω|

0

dy
yr

(1− y2)
(2.15)

which thus obeys the differential equation

∂∆R(ω)
∂ω

=
r

ω
∆R(ω) +

2∆0D
r−1

π

[
1−

( ω
D

)2
]−1

.

(2.16)
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Direct evaluation of equation (2.15) yields, for |ω| < D,

∆R(ω) = −sgn(ω)∆0

{
tan

(
πr
2

)
|ω|r

+ Dr

πr

[
F (1,−r; 1− r; |ω|D ) −F (1,−r; 1− r;− |ω|D )

]}
(2.17a)

= −sgn(ω)∆0

{
tan

(
πr
2

)
|ω|r + 2Dr

π(r−1)
|ω|
D

+ O

[(
|ω|
D

)3
]}

(2.17b)

with F (α, β; γ; z) a Gauss hypergeometric function.
Equation (2.17) encompasses the results given in [13] and
applies for any r ≥ 0, including r = 1 for which the limit
as r → 1 of equation (2.17b) gives

∆R(ω) =
2∆0

π
sgn(ω)|ω| ln

(
|ω|
D

)
+O

[(
|ω|
D

)3
]

: r = 1

(2.18)

showing the characteristic logarithmic behaviour that, as
discussed in Section 3, is indicative of the marginal nature
of r = 1 for U = 0.

3 Non-interacting limit

As mentioned in Section 1, the non-interacting problem
is surprisingly rich: it contains already much underlying
physics relevant to the interacting case and, for the soft-
gap case in particular, gives rise to both SC and LM states
as now considered.

The impurity spectrum D0(ω) (with “0” referring to
U = 0) is the primary quantity, since the excess density
of states ∆ρ0(ω) follows from it via equation (2.9). The
low-ω behaviour of the latter determines in turn the low
temperature behaviour of the change in thermodynamic
properties due to addition of the impurity; the “excess”
total uniform spin susceptibility, specific heat and entropy
being given trivially for non-interacting electrons by

χ0
imp(T ) =

(gµB)2

2T

∫ ∞
−∞

dω ∆ρ0(ω)f(ω) (1− f(ω))

(3.1a)

C0
imp(T ) =

2
T 2

∫ ∞
−∞

dω ω2∆ρ0(ω)f(ω) (1− f(ω))

(3.1b)

S0
imp(T ) = −2

∫ ∞
−∞

dω ∆ρ0(ω)
[
f(ω) ln f(ω)

+ (1− f(ω)) ln (1− f(ω))
]

(3.1c)

where f(ω) is the Fermi function (with chemical potential
µ = 0 for all T due to particle-hole symmetry), and kB ≡ 1
has been taken.

The band/continuum part of ∆ρ0(ω) is given from
equations (2.9,10) by

∆ρb
0(ω) = Db

0 (ω)
[
1− ∂∆R(ω)

∂ω

]
− 1
π

ReG0(ω)
∂∆I(ω)
∂ω

(3.2)

with Db
0 (ω) from equation (2.8a). For the gapless case

δ = 0, a straightforward calculation using equation (2.16)
for ∂∆R/∂ω gives a simple relation between ∆ρb

0(ω) and
Db

0(ω) for |ω| < D:

∆ρb
0(ω) = Db

0 (ω)
(1− r)
q(ω)

: δ = 0 (3.3a)

where

q−1(ω) =

[
1 +

2∆0D
r−1

π(r − 1)
1

1−
(
ω
D

)2
]
. (3.3b)

The pole contributions, Dp
0(ω) and ∆ρp

0(ω), are consid-
ered below. Here we simply note that for finite band-
width, D, there are always such contributions outside the
band, |ω| > D. These however are of no importance to the
problem, and are not considered explicitly in what follows
where |ω| < D is implicit.

3.1 Gapped case: LM state

We consider first the case of an insulating host, with δ > 0.
Since ∆I(ω) = 0 for |ω| < δ/2 inside the gap, it follows
from equation (2.8b) (with Σ = 0) that

Dp
0 (ω) = qδ(ω) (3.4)

with poleweight q given by

q−1 =
[
1−

(
∂∆R(ω)

∂ω

)
ω=0

]
(3.5a)

= 1 + 2∆0
π

[
δ
2

]r−1
B(δ; r) (3.5b)

where equation (2.14) is used. From equation (2.8b) the
band contribution Db

0 (ω) naturally vanishes inside the
gap, and behaves as Db

0 (ω) ∝ ∆I(ω) ∼ (|ω| − δ/2)r close
to the gap edges. D0(ω) is thus dominated by the discrete
state at the Fermi level, ω = 0, as too is ∆ρ0(ω): from
equations (2.10b) and (3.4,5),

∆ρp
0 = δ(ω) (3.6)

whose poleweight of unity reflects a “whole” single extra
state at the Fermi level induced by addition of the impu-
rity.

These features — a whole excess state at the Fermi
level, with non-vanishing weight on the impurity — are
the hallmark of the LM state for U = 0. They naturally
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(c)(b)(a)

ω = 0

(ω)0D

ω = 0ω = 0

Fig. 1. Schematic of non-interacting impurity spectra D0(ω)
for (a) LM state, r > 2; (b) LM state, 1 < r < 2; (c) SC state,
r < 1.

control the low-T excess thermodynamic functions, given
from equations (3.1) as T → 0 by

χ0
imp(T ) =

(gµB)2

8kT
= 1

2χCurie(T ) (3.7a)

S0
imp(0) = ln 4 (3.7b)

with corrections that are thermally activated (as too is
C0

imp(T )). The residual entropy of ln 4 is physically ob-
vious: the excess Fermi level state has four occupancies
— empty, ↑-spin or ↓-spin occupied and doubly occupied
— with equal a priori probabilities for U = 0. This is
also why χ0

imp(T ) is half a Curie law: only half of the four
occupancies, the singly occupied states, are paramagnet-
ically active. This situation will of course change imme-
diately for any U > 0 where doubly occupied (and hence
empty) spin configurations are suppressed, producing in-
stead χimp(T ) = χCurie(T ) as T → 0, and Simp(0) = ln 2.

The gapless case, δ = 0, is considered in Sections 3.2
and 3, but first we ask what happens as δ → 0. From
equation (2.14),

B(δ; r) =
πr

sin(πr)
+

1
(r − 1)

x1−r

(1 + x)
F (1,−r; 2− r;−x)

(3.8a)

with

x =
δ

2D
· (3.8b)

From equation (3.5b), the behaviour of the poleweight q
for δ/2D� 1 can thus be obtained. For r > 1 one finds

q−1 =
[
1 +

2∆0D
r−1

π(r − 1)

]
+O

(
δr−1; δ

)
: r > 1 (3.9)

which remains finite as δ → 0 (where the resultant q =
q(ω = 0), from Eq. (3.3b)), showing the persistence of the
LM state for r > 1 when δ = 0. For r < 1 by contrast,

q−1 = 1 +
2r

sin(πr)
∆0D

r−1

[
δ

2D

]r−1

+O(1) : r < 1

(3.10)

which diverges as δ → 0 (as too does the marginal case of
r = 1, where q−1 ∼ 1/ ln(2D/δ)). For r < 1, the LM state
does not therefore survive closure of the gap.

3.2 Gapless case: r > 1, LM state

For r > 1, the LM state indeed persists with the gap
shut, δ = 0: since ∆I(ω) ∼ |ω|r decays to zero as ω →
0 more rapidly than ∆R(ω) ∼ O(|ω|) (see Eq. (2.17b)),
equation (2.8b) yields directly Dp

0 = qδ(ω) with q given
by equation (3.5a) and hence equation (3.9) with δ = 0.
Likewise, from equation (2.10b), ∆ρp

0(ω) = δ(ω) contains
a “whole” extra state.

In contrast to the gapped case however, Db
0 (ω) now

extends down to ω = 0. From equations (2.8a) and (2.17b)
one obtains

Db
0 (ω) =

∆0q
2

π
|ω|r−2 +O(|ω|2r−3) (3.11)

diverging as ω → 0 for 1 < r < 2 and vanishing for r > 2,
as found in [13]. The full D0(ω) consists of course of both
pole and band contributions; it is illustrated schematically
in Figure 1. From equations (3.3) and (3.11) the low-ω
behaviour of ∆ρb

0(ω) is

∆ρb
0(ω) =

∆0q

π
(1− r)|ω|r−2 +O

(
|ω|2r−3; |ω|r

)
. (3.12)

The excess thermodynamic properties follow directly via
equation (3.1): S0

imp(0) = ln 4 again, while

χ0
imp(T ) = 1

2χCurie(T ) + c′T r−2 +O(T 2r−3;T r) (3.13a)

C0
imp(T ) = d′T r−1 +O(T 2(r−1);T 1+r) (3.13b)

where c′ and d′ are negative constants (whose sign reflects
the low-ω “depletion” of ∆ρb

0(ω) — the coefficient of the
leading |ω|r−2 term in Eq. (3.12) being negative for r > 1).
Not surprisingly, and in part for the reasons discussed in
Section 3.1, the behaviour equation (3.13) characteristic
of the U = 0 limit differs from that found by NRG for the
U > 0 LM regime [12]: χimp(T ) = χCurie(T ) + c′3T

r−1 and
Cimp(T ) ∝ T r.

3.3 Gapless case: r < 1, SC state

From equations (2.8a) and (2.17b), a simple calculation
gives the low-ω behaviour of the continuum contribution
to D0(ω), viz.

Db
0 (ω) =

|ω|−r
π∆0(1 + β2)

[
1− β

1 + β2

2
∆0q(0)

|ω|1−r
]

+O(|ω|2−3r) (3.14a)

where

β = tan
(π

2
r
)
. (3.14b)

∆ρb
0(ω) follows directly from equation (3.3a) and has the

same leading asymptotics as Db
0 (ω).
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Now consider Dp
0 (ω), given from equation (2.8b) with

Σ = 0. From equation (2.17b) the leading low-ω behaviour
of ∆R(ω) for 0 < r < 1 may be cast as

∆R(ω) = −sgn(ω) tan
(
π
2 r
)
∆I(ω) : ω → 0 (3.15)

whence

Dp
0(ω) ≡ L(∆I; r) (3.16)

with L(x;λ) (used again in Sect. 4) defined generally by

L(x;λ) =
ηπ−1[

tan
(
π
2λ
)
x
]2 + [η + x]2

: η → 0 + (3.17a)

=
λ

tan
(
π
2λ
)δ(x). (3.17b)

Since ∆I(ω) = ∆0|ω|r, it follows that

Dp
0 (ω) =

1
∆0 tan

(
π
2 r
) |ω|1−rδ(ω) ≡ 0 (3.18)

i.e. there is no pole contribution to D0(ω) itself, consistent
with section (3.1) as δ → 0. Hence D0(ω) ≡ Db

0 (ω) is given
by equation (3.14), with D0(ω) ∼ |ω|−r as found in [13]
(and illustrated schematically in Fig. 1c).

But from equation (2.10b), ∆ρp
0(ω) is given in con-

trast by

∆ρp
0(ω) = Dp

0 (ω)
[
1 +∆0r tan

(
π
2 r
)
|ω|r−1

]
(3.19a)

= rδ(ω) (3.19b)

(via Eq. (3.18)), and thus contains a δ-function contribu-
tion of weight r, as well known from the work of [10,13]
where the result was obtained from analysis of the phase
shift. This behaviour suggests the interpretation [13] that
a fraction r of a conduction electron occupies the decou-
pled excess state at the Fermi level, the remaining fraction
1− r being absorbed into the resonant continuum centred
on ω = 0; although note again that, in contrast to the
LM state, the excess level has no weight on the impu-
rity itself: Dp

0(ω) ≡ 0. As discussed further in Section 4,
equation (3.19b) is known to be characteristic of the SC
state with interactions present [10,13]. It is in part for this
reason that, even in the non-interacting limit, we adhere
to the conventional terminology of a “strong coupling”
(SC) state.

Excess thermodynamic properties follow directly via
equation (3.1), namely

χ0
imp(T ) = r

2χCurie(T ) + cT−r +O(T 1−2r) (3.20a)

C0
imp(T ) = dT 1−r +O(T 2(1−r)) (3.20b)

S0
imp(T ) = 2r ln 2 + eT 1−r +O(T 2(1−r)) (3.20c)

where c, d and e are positive constants. These are worth
noting for comparison to NRG results obtained for the
U > 0 SC phase, namely [10–13]

χimp(T ) =
r

2
χCurie(T ) + c′1T

−r + c′2T
−2r (3.21a)

Cimp(T ) ∝ T 1−r (3.21b)

Simp(T ) = 2r ln 2 + e′T 1−r. (3.21c)

It is well known [10,13] that the leading low-T behaviour
of χimp and Simp for the SC phase — viz. r

2χCurie and
2r ln 2 respectively — are given precisely by the U = 0
limit result. But it is striking to note that the leading
T -dependences of Cimp(T ) and ∆Simp(T ), namely T 1−r,
are also inherent to the non-interacting limit, as too is the
T−r correction to χimp. Only the T−2r contribution to the
NRG χimp — which applies only for r < 1

2 where the SC
phase arises for U > 0 — is absent in the non-interacting
limit.

3.4 Local impurity susceptibility

The “excess” χ0
imp(T ) discussed above refers to the change

in the total uniform spin susceptibility of the system in-
duced by addition of the impurity. Here we comment
briefly on the local impurity susceptibility χii(T ), which
has also been studied via NRG [10,13]. It is defined by

χii(T ) = −gµB
∂〈Ŝiz〉
∂h

∣∣∣∣
h=0

(3.22a)

with Ŝiz referring to the impurity spin and h a magnetic
field acting solely on the impurity; and is given in standard
notation by

χii(T ) = (gµB)2

∫ β

0

dτ〈Ŝiz(τ)Ŝiz〉 (3.22b)

with β = 1/T . In the non-interacting limit, χ0
ii(T ) is triv-

ially evaluated and given by

χ0
ii(T ) =

(gµB)2

2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

{
D0(ω1)D0(ω2)

ω1 − ω2

× f(ω1) [1− f(ω2)]
[
eβ(ω1−ω2) − 1

]}
. (3.23)

Separating D0(ω) = qδ(ω) + Db
0 (ω), and using particle-

hole symmetry, a simple calculation gives

χ0
ii(T )

(gµB)2
=

q2

8T
+
q

2

∫ ∞
−∞

dω
Db

0 (ω)
ω

tanh
( ω

2T

)
+

1
2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 D
b
0 (ω1)Db

0 (ω2)
[f(ω2)− f(ω1)]

ω1 − ω2
.

(3.24)
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For the gapless LM regime r > 1, where the poleweight
q(r) 6= 0 is given by equation (3.9) (with δ = 0), the low-T
behaviour of χ0

ii(T ) is thus

χ0
ii(T ) =

q2

2
χCurie(T ) : r > 1 (3.25)

with leading corrections O
[
min(T r−2, 1)

]
arising from

the second term of equation (3.24). Hence, as expected
for a LM state and mirrored also in χ0

imp(T ) equa-
tion (3.13a), the impurity spin remains unquenched; al-
though χ0

ii(T )/χ0
imp(T ) = q2 < 1 as T → 0, reflecting the

fact that the “whole” excess level induced by the impurity
has only partial weight on the impurity itself.

For the SC phase r < 1, by contrast, the excess level
has no overlap on the impurity, q = 0. Only the final term
in equation (3.24) survives, and using equation (3.14a) is
O(1) for r < 1

2 and O(T 1−2r) for 1
2 < r < 1; hence, in

particular,

lim
T→0

Tχ0
ii(T ) = 0 : 0 ≤ r < 1. (3.26)

As for the normal (r = 0) Anderson model, the impurity
spin is thus locally quenched in the entire SC regime r < 1;
in contrast, for obvious reasons, to the behaviour of χ0

imp,
equation (3.20a).

The above behaviour — complete (SC) versus incom-
plete (LM) quenching of the impurity spin — is also found
in NRG studies of the soft-gap Kondo model [11,13]; and
the total spin quenching symptomatic of the SC phase
is one reason why it may be regarded [13] as a natural
generalization of conventional Fermi liquid physics.

We have seen that even the non-interacting limit con-
tains both LM and SC states, whose characteristics are
reflected in the behaviour of the impurity spectrum D0(ω)
— by whether (LM) or not (SC) there is a δ-function
contribution at the Fermi level — and hence in turn in
∆ρ0(ω) and resultant thermodynamic functions. One fi-
nal point should however be noted: the U = 0 “phase
diagram” consists of LM states for r > 1 and SC states
for r < 1. This is in contrast to what is found by NRG for
U > 0 [12,13], where SC states arise only for r < 1

2 and
where only LM states occur for r > 1

2 . We consider the
implications of this further in Section 5.

4 U > 0: conditions for SC phase

For non-vanishing interaction strengths U we now seek
conditions under which, upon increasingU from zero, a SC
state will persist; (only the gapless problem, and for r < 1,
need be considered, since for r > 1 the U = 0 ground state
is a local moment one). Employing a phase shift analy-
sis that parallels Nozières’ Fermi liquid description of the
“normal” Kondo effect [15], Chen and Jayaprakash [10]
have argued that the symmetric SC state is characterized
generally by

∆ρp(ω) = rδ(ω) : SC (4.1)

— precisely as for the non-interacting limit.
The question now is: under what conditions upon the

self-energy Σ(ω) will this arise? ∆ρp(ω) is given by equa-
tion (2.10b) with Dp(ω) from equation (2.8b). Since ∆I

and ΣI are non-negative and, for |ω| < D, ∆I(ω) = ∆0|ω|r
vanishes only for ω = 0, the only δ-function contribution
that could arise in ∆ρp(ω) for |ω| < D is of course for
ω = 0. Hence only the low-ω behaviour of ∆ and Σ is
relevant, and ∆ρp(ω) is given by (cf Eq. (3.19a))

∆ρp(ω) = Dp(ω)
[
1 +∆0r tan

(π
2
r
)
|ω|r−1

]
(4.2a)

with

Dp(ω) ≡ ηπ−1

[∆R(ω) +ΣR(ω)]2 + [η +∆I(ω) +ΣI(ω)]2

(4.2b)

(where the “bare” ω contribution to equation (2.8b) can
again be neglected since, for r < 1, it is subdominant to
∆R(ω) ∼ |ω|r). Notice also that if the low-ω behaviour of
ΣI(ω) is of form

ΣI(ω) = α|ω|λ : ω → 0 (4.3a)

with −1 < λ < 1, where α ≡ α(U) is a (necessarily posi-
tive) constant, then the corresponding low-ω behaviour of
ΣR(ω) follows directly from the Hilbert transform equa-
tion (2.6) as

ΣR(ω) = −sgn(ω) tan
(
π
2λ
)
ΣI(ω) : ω → 0. (4.3b)

If ΣI(ω) and hence ΣR(ω) decay to zero as ω → 0 more
rapidly than ∆I(ω) — i.e. if ΣI(ω) is of form equation
(4.3a) with r < λ — then, trivially, the low-ω behaviour
of equation (4.2b) for Dp(ω) is precisely that of the U = 0
limit, i.e. Dp(ω) = L(∆I; r) (see equation (3.16)). Hence,
as in equations (3.17) ff, ∆ρp(ω) = rδ(ω) arises. If by
contrast ΣI/R dominate the low-ω behaviour of equa-
tion (4.2b) — i.e. if ΣI(ω) is of form equation (4.3a)
with λ < r — then from equations (4.3) and (3.17),
Dp(ω) = L(ΣI;λ); from equation (4.2a) it then follows
that ∆ρp(ω) ∼ |ω|r−λδ(ω) ≡ 0 since λ < r, i.e. there is
no pole contribution to ∆ρ(ω). Finally, if the low-ω be-
haviour of ΣI/Ris the same as that of ∆I/R, viz. λ = r
in equations (4.3), then a directly analogous calculation
gives ∆ρp(ω) = r/[1 + α(U)/∆0] δ(ω); i.e. a δ-function
contribution but with a U -dependent weight that is less
than r.

The question posed above is thus answered: for
∆ρp(ω) = rδ(ω) to arise, and thus a SC state to be re-
alized for U > 0, ΣI(ω) and hence ΣR(ω) must decay to
zero as ω → 0 more rapidly that |ω|r, i.e.

ΣI(ω) ω→0∼ α|ω|λ : r < λ (4.4)

This has important implications for the low-ω be-
haviour of the impurity single-particle spectrum D(ω)
(≡ Db(ω)), since from equation (2.8a) it follows that
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the low-ω asymptotic behaviour of D(ω) is precisely that
of D0(ω), whence in particular

D(ω) ω→0∼ |ω|−r (4.5)

as indeed found for the symmetric SC phase in NRG stud-
ies of the impurity spectrum [12]. More importantly, using

lim
ω→0
|ω|rD(ω) = lim

ω→0
|ω|rD0(ω) (4.6)

together with equation (3.14), and defining A(ω) =
|ω|rD(ω), it follows that

π∆0

[
1 + tan2

(
π
2 r
)]
A(ω = 0) = 1. (4.7)

This result is of course specific to the symmetric soft-gap
model considered, and we believe it to be significant. For
the “normal” Anderson model, r = 0, it recovers the well
known result (see e.g. [1]), normally viewed as a conse-
quence of the Friedel sum rule, that the impurity single
particle spectrum is pinned at the Fermi level ω = 0,
i.e. that D(ω = 0) = 1/π∆0 (in this case for all U).
Equation (4.7) represents a generalization of this pinning
condition to arbitrary r where a SC state obtains, whose
continuity in r reflects the fact that interactions have no
influence in renormalizing the asymptotic behaviour of
D(ω) as ω → 0; and which is entirely consistent with the
conclusions of Gonzalez-Buxton and Ingersent [13] from
NRG studies that the SC state embodies a natural gener-
alization of standard Fermi liquid physics. The extent to
which equation (4.7) is captured in practice should also
provide a good test of the accuracy of NRG calculations
at low frequencies, and will be discussed elsewhere; more-
over the generalized pinning condition will prove central
to our local moment approach to the problem, as will be
discussed in a subsequent paper [14].

One important question is not of course answered by
the above considerations: for what range of r will the con-
dition equation (4.4) for a SC state actually arise? NRG
calculations give r < 1

2 for the SC state [10–13]. We ex-
amine this question in the following section within the
framework of second order PT in U , together with a cor-
responding analysis of the evolution with U of the single-
particle spectra appropriate to the LM state.

5 Perturbation theory in U

Low order perturbation theory in U about the non-
interacting limit is probably the simplest and certainly the
most conventional approach to the problem. For the “nor-
mal” Anderson model, r = 0, its predictions are of course
well known (see e.g. [1]): while restricted by contruction to
weak coupling interactions U , and thus incapable of cap-
turing strong coupling “Kondo” asymptotics, it generates
order by order characteristic Fermi liquid behaviour, in
particular that ΣI ∼ O(ω2) and that the impurity spec-
trum is pinned at the Fermi level, D(0) = 1/π∆0; and
the single-particle spectrum evolves continuously upon in-
creasing U from the non-interacting limit, in accordance

Fig. 2. Second order self-energy diagram, with bare (U = 0)
impurity propagators denoted by solid lines and the on-site
impurity U by wavy lines.

with the fact that the normal Anderson model is a Fermi
liquid for all U/∆0 ≥ 0. For r > 0 by contrast the im-
plications of a low order perturbative treatment — and
even whether such is in general applicable — are far from
obvious, and are considered here at the simplest second
order level.

The familiar second order self-energy diagram is shown
in Figure 2 and may be written as

Σ(ω) = U2

∫ ∞
−∞

dω1

2πi
0Π(ω1)G0(ω1 + ω) (5.1)

where G0(ω) is the non-interacting impurity Green func-
tion with spectral representation

G0(ω) =
∫ ∞
−∞

dω1
D0(ω1)

ω − ω1 + iηsgn(ω)
· (5.2)

The “polarization bubble” 0Π(ω) is given by

0Π(ω) = i
∫ ∞
−∞

dω1

2π
G0(ω1)G0(ω1 − ω) (5.3a)

= 0Π(−ω) (5.3b)

(where the latter follows from a trivial change of variables
in Eq. (5.3a)); its spectral representation is

0Π(ω) =
∫ ∞
−∞

dω1

π

Im 0Π(ω1)sgn(ω1)
ω1 − ω − iηsgn(ω)

· (5.4)

From equation (5.1), using (5.2) and (5.4) together
with D0(ω) = D0(−ω) (particle-hole symmetry), a
straightforward calculation gives

ΣI(ω) = U2

∫ |ω|
0

dω1Im 0Π(ω1)D0(ω1 − |ω|) (5.5)

which is thus readily calculable from a knowledge ofD0(ω)
(Sect. 3) and 0Π(ω). Similarly, using equation (5.2) again,
a directly analogous calculation yields

1
π

Im 0Π(ω) =
∫ |ω|

0

dω1D0(ω1)D0(ω1 − |ω|) ≥ 0. (5.6)
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Note that, using equation (5.6), equation (5.5) implies
ΣI(ω) ≥ 0 as required by analyticity. Equations (5.5) and
(5.6) are the basic equations to be analyzed, as now con-
sidered for the gapless problem (δ = 0).

Separating D0(ω) into pole and band contributions,
and using Dp

0 (ω) = qδ(ω), equation (5.6) reduces for |ω| <
D to

1
π

Im 0Π(ω) =
1
2
q2δ(ω) + qDb

0(ω)

+
∫ |ω|

0

dω1D
b
0 (ω1)Db

0 (ω1 − |ω|). (5.7)

This encompasses both r > 1 where q 6= 0 is given
from equation (3.9) with δ = 0; and r < 1 where
q = 0 (Sect. 3.3) and only the “band-band” contribu-
tion to Im 0Π(ω) survives. (We add in passing that pole-
contributions to Dp

0 (ω) from outside the band, |ω| > D,
generate spectral contributions to Im 0Π(ω) for D < |ω| <
2D; as we shall be concerned only with the low-ω be-
haviour of Im 0Π(ω) and hence ΣI(ω), we refrain from
showing these, although they are fully included in numer-
ical calculations where they are necessary to ensure the
correct normalization of D(ω).)

The low-ω asymptotics of Im 0Π(ω) follow from
equation (5.7) using the results of Section 3 for D0(ω).
For r > 1 we obtain

1
π Im 0Π(ω) ω→0∼ 1

2q
2δ(ω) + qDb

0 (ω) + O(|ω|2r−3) : r > 1
(5.8)

where the O(|ω|2r−3) corrections arise from the band-band
piece of equation (5.7) and diverge less rapidly as ω → 0
than the leading |ω|r−2 behaviour of Db

0(ω) (Eq. (3.11)).
For r < 1 by contrast, only the band-band contribution
to equation (5.7) survives, and a simple calculation using
equation (3.14) gives the leading low-ω behaviour

1
π

Im 0Π(ω) ω→0∼ C(r)|ω|1−2r : r < 1 (5.9a)

with C > 0 given by

C(r) =
cos4

(
π
2 r
)

π∆0

∫ 1

0

dy y−r(1− y)−r (5.9b)

=
cos4

(
π
2 r
)

∆0

22r−1

√
π

Γ (1− r)
Γ (3

2 − r)
· (5.9c)

These results may now be used in equation (5.5) to de-
termine the crucial low-ω asymptotics of ΣI(ω), as now
considered separately for r > 1 and r < 1.

5.1 r > 1: LM state

From equations (5.5) and (5.8) the low-ω behaviour of
ΣI(ω) is given by

ΣI(ω) =
πU2q2

4
[
qδ(ω) + 3Db

0(ω) + O(|ω|2r−3)
]

=
πU2q3

4
δ(ω) +Σb

I (ω) (5.10a)

where, using equation (3.11), the asymptotic behaviour
of the “band” contribution Σb

I (ω) is

Σb
I (ω) ω→0∼ 3

4
U2q4∆0|ω|r−2. (5.10b)

The low-ω behaviour of ΣI(ω) is thus integrably singular,
and manifestly not that of a Fermi liquid or any natural
generalization thereof: not surprisingly, since the under-
lying U = 0 ground state for r > 1 is a local moment
one. The corresponding real part, ΣR(ω), follows from the
Hilbert transform equation (2.6) using equation (5.10a),
and has the leading low-ω behaviour

ΣR(ω) ω→0∼ U2q3

4
P

(
1
ω

)
(5.11)

(with correctionsO(|ω|r−2, |ω|) arising from the transform
of Σb

I (ω)).
From equation (2.8) the low-ω behaviour of the

impurity spectrum D(ω) thus follows directly as

D(ω) ω→0∼ Σb
I (ω)

π [ΣR(ω)]2
=

12
π

∆0

(Uq)2
|ω|r. (5.12)

This behaviour — D(ω) ∼ |ω|r — is precisely the spec-
tral hallmark of the LM regime found in NRG calcula-
tions for U > 0 [12]. It is of course in marked contrast
to what obtains in the non-interacting limit, viz. equa-
tion (3.11) Db

0 (ω) ∼ |ω|r−2 (together with a pole contri-
bution for U = 0, which is eliminated entirely for U > 0).
Although the lowest frequency spectral asymptotics thus
change character abruptly upon increasing U from zero,
it is however straightforward to show (using the asymp-
totic forms of ΣR/Σ

b
I above) that for sufficiently small

U there exists a crossover scale ω0 = 1
2Uq

2 such that for
(D�)|ω| � ω0 the behaviour of D(ω) is that of the non-
interacting limit, viz. D(ω) ∼ |ω|r−2; while for |ω| � ω0,
D(ω) ∼ |ω|r as in equation (5.12).

Representative single-particle spectra for the LM
state, obtained at the second-order level, are illustrated in
Figures 3 and 4 for r = 1.5. We consider first a
“weak hybridization” example which, for r > 1, entails

D̃ = ∆
1
r−1
0 D � 1 (see Eq. (2.12)). For D̃ = 1.5 × 10−3,

Figure 3a shows the dimensionless D′(ω̃) = ∆
1

1−r
0 D(ω)

vs. ω̃ = ω/∆
1

1−r
0 for three reduced interaction strengths

Ũ = U/∆
1

1−r
0 = 2.5× 10−4, 5× 10−4 and 7.5× 10−4. The

dominant visible feature of the spectra are the Hubbard
satellites, which for all Ũ ’s shown are centred to high ac-
curacy on ω̃0 = 1

2 Ũq
2 (with the poleweight q ≈ 0.95 from

equation (3.9) with δ = 0). This is expected physically:
the weak hybridization regime is “close” to the atomic
limit, ∆0 = 0 = Vik (where q = 1), which by a well known
accident for the particle-hole symmetric case (see e.g. [1])
is captured exactly by second order PT, and where
equation (5.11) with q = 1 is exact for all ω. The sharp
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Fig. 3. LM regime, r = 1.5. (a)D′(ω̃) = ∆
1

1−r
0 D(ω) versus

ω̃ = ω/∆
1

1−r
0 for reduced interaction strengths Ũ = 2.5× 10−4

(solid line), 5×10−4 (long-dashed) and 7.5×10−4 (dotted); all
for reduced bandwidth D̃ = 1.5×10−3. Inset: low-ω̃ behaviour

of D′(ω̃). (b)
h
π(Ũq)2/12

i
D′(ω̃) versus ω̃ on a log-log scale for

same parameters as (a).

Hubbard satellites of Figure 3a thus correspond simply
to weak resonant broadening, and only slight shifting,
of the atomic limit poles occurring at ω = ± 1

2U .
The low-ω behaviour of the spectrum, equa-
tion (5.12), is not directly visible in Figure 3a, but
is clear from the inset to Figure 3a and in Fig-
ure 3b. In the latter, for the same parameters as
Figure 3a, we show log

[
(π[Ũ q]2/12)D′(ω̃)

]
vs. log ω̃.

That D′(ω̃) ∼ |ω̃|r as ω̃ → 0 is evident; as too is the
accuracy of equation (5.12) in its entirety. The above
mentioned crossover to |ω̃|r−2 behaviour for |ω̃| � ω̃0 is
also evident in Figure 3b for the lowest Ũ example.

The spectral features naturally evolve smoothly with
increasing hybridization strength. For r = 1.5 again,
Figure 4 shows D′(ω̃) vs. ω̃ for a “strong hybridization”
example, D̃ = 10 (where q ≈ 0.2 � 1), for Ũ = 4, 8 and
20. The low-ω̃ behaviour, D′(ω̃) ∼ |ω̃|r, is clearly seen
in all cases. The Hubbard satellites are again centred on
ω̃0 = 1

2 Ũq
2 for sufficiently low Ũ (e.g. for Ũ = 4); and

in all cases, since q � 1, lie well below the scale of 1
2 Ũ

characteristic of the atomic limit. It is also seen that the
satellites become increasingly diffuse with increasing in-
teraction strength, although whether this is a genuine fea-
ture is not clear since second order PT is by construction
confined to weak coupling.

5.2 0 ≤ r < 1
2
: SC state

For r < 1, Im 0Π(ω) is given by equation (5.9) and the
ω → 0 behaviour of D0(ω) (≡ Db

0 (ω)) by equation (3.14).

Fig. 4. LM regime, r = 1.5 and reduced bandwidth D̃ = 10.
D′(ω̃) versus ω̃ for Ũ = 4 (solid line), 8 (long-dashed) and 20
(dashed).

Hence from equation (5.5) the low frequency behaviour of
ΣI(ω) is

ΣI(ω) ω→0∼ α(U)|ω|2−3r (5.13a)

with

α(U) = U2 cos2
(
π
2 r
)

∆0
C(r)

∫ 1

0

dy y1−2r(1− y)−r

= U2 cos2
(
π
2 r
)

∆0
C(r)

Γ (2[1− r])Γ (1− r)
Γ (3[1− r]) (5.13b)

and C(r) given by equation (5.9). From the Hilbert
transform equation (2.6), the corresponding behaviour of
ΣR(ω) follows as

ΣR(ω) ω→0∼
−sgn(ω)γ|ω| : 0 ≤ r < 1

3
(5.14a)

−sgn(ω) tan
[π

2
(2−3r)

]
α(U)|ω|2−3r : r >

1
3

(5.14b)

(with logarithmic behaviour ∼ |ω| ln |ω| for r = 1
3 ), where

πγ =
∫∞
−∞ dω ΣI(ω)/ω2 > 0.

The important point here is that for r < 1
2 , where

r < 2−3r, ΣI(ω) and ΣR(ω) decay to zero as ω → 0 more
rapidly than ∆I/R ∼ |ω|r. The conditions established in
Section 4 for the SC state are thus satisfied at the level
of second order perturbation theory, and the SC state is
hence perturbatively continuable from the non-interacting
limit. Interactions do not renormalize the asymptotic be-
haviour of D(ω) as ω → 0, and the generalized pinning
condition equation (4.7) is thus satisfied. Note moreover
that, as for the normal Anderson model r = 0, ΣI(ω) van-
ishes at the Fermi level ω = 0.

Representative single-particle spectra for the SC phase
are shown in figure 5 which, for r = 1

4 and the wide-
band limit (D = ∞), shows D′(ω̃) vs. ω̃ for Ũ = 1, 5
and 7.5. As found in NRG studies [12], the gross features
of the spectrum are dominated by the low-ω behaviour
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Fig. 5. SC phase, r = 1
4
. D′(ω) = ∆

1
1−r
0 D(ω) versus ω̃ for Ũ

= 1 (dashed line), 5 (long-dashed) and 7.5 (solid).

where D(ω) ∼ |ω|−r. And with increasing interaction
strength Ũ , the low frequency resonant continuum nar-
rows and emergent Hubbard satellites become evident as
weak shoulders in the spectrum.

A far more revealing exposé is seen in
Figure 6 where, for the same parameters as Figure 5,
π∆0

[
1 + tan2

(
π
2 r
)]
A(ω) vs. ω̃ is shown, with

A(ω) = |ω|rD(ω). (5.15)

Note first that the generalized pinning condition equa-
tion (4.7), which applies for any r where a SC state
obtains, is manifestly satisfied. The low-ω behaviour
of A(ω) is cusp-like, and from the asymptotics given
above it is readily shown that A(ω) ∼ A(0) −[
a1|ω|1−r + a2|ω|2(1−2r)

]
where the coefficient a1 ∝

tan(πr/2). For 0 < r < 1
3 the cusp is thus of form

∆A(ω) ∼ |ω|1−r, while for 1
3 < r < 1

2 it behaves as
∆A(ω) ∼ |ω|2(1−2r); and for r = 0, the parabolic be-
haviour ∆A(ω) ∼ ω2 characteristic of “normal” Fermi liq-
uid behaviour is recovered. In fact, the behaviour of A(ω)
shown in Figure 5 for r = 0.25 is strongly reminiscent
of spectra characteristic of the normal Anderson model,
r = 0; the latter being shown in Figure 6 for the same Ũ
values. The parallels are obvious, in each case A(ω = 0)
being Ũ -independent (pinned) and with Hubbard satellite
peaks progressively evolving with increasing interaction
strength. Most significantly, we see in either case the emer-
gence with increasing Ũ of a low-energy scale, reflected in
the half-width, ωK, of A(ω) which narrows progressively
as Ũ is increased. For r = 0 this is just the emergence of
the ordinary Kondo scale, while for 0 < r < 1

2 it is the
generalization thereof known in a thermodynamic context
for the soft-gap Kondo model itself [6,10].

We shall not however pursue here the evolution of the
Kondo scale with increasing Ũ since the above analysis,
while showing that the SC state is perturbatively con-
tinuable from Ũ = 0 and enabling a description of the
spectrum at low Ũ , also points clearly to the limitations
of a low-order perturbative treatment. For the normal An-
derson model, we know that low-order perturbation the-
ory is intrinsically incapable of describing strong coupling
“Kondo” asymptotics — D(ω) narrowing algebraically
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Fig. 6. π∆0[1 + tan2(π2 r)]|ω|
rD(ω) versus ω̃ for (a) SC phase,

r = 1
4

and (b) “normal” r = 0 Anderson model. For Ũ = 1
(dashed line), 5 (long-dashed) and 7.5 (solid) in either case.

with increasing Ũ and failing thereby to yield the correct
exponentially small Kondo scale ωK ∼ exp(−πU/8∆0)
(see e.g. [1]). And the situation is even more acute for the
SC phase with r > 0: here, from NRG studies of the gap-
less Anderson model [12,13], it is known that for 0 < r < 1

2

there is a critical line ŨC(r) below which a SC state ob-
tains, and above which the ground state is by contast a
LM one. As Ũ → ŨC(r)−, the low energy Kondo scale
ωK characteristic of the SC state must vanish, and this
clearly cannot be captured by straight perturbation the-
ory. To capture such behaviour, and hence in particular
to describe the SC/LM phase boundary, an intrinsically
non-perturbative approach is needed, and will be given in
a subsequent paper [14].

5.3 1
2
< r < 1

Finally, we turn to the regime 1
2 < r < 1. Here the low-

ω asymptotics of the second order self-energy are again
precisely those given in Section 5.2, viz. equations (5.13)
and (5.14b). But in contrast to 0 ≤ r < 1

2 , ΣI(ω) and
ΣR(ω) do not decay to zero as ω → 0 more rapidly
than ∆I/R ∼ |ω|r, whence the conditions established in
Section 4 for the SC state are not satisfied for 1

2 < r < 1:
there is no pole contribution to ∆ρ(ω), and the pinning
condition equation (4.7) is not satisfied since the low-ω be-
haviour of the impurity spectrum is apparently dominated
by ΣI/R, viz. D(ω) ∼ [ΣI(ω)]−1 ∼ |ω|3r−2 — diverging as
ω → 0 for 1

2 < r < 2
3 , but less rapidly than the |ω|−r

behaviour characteristic of the SC state; and vanishing
for 2

3 < r < 1, but less rapidly than the |ω|r behaviour
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symptomatic of the LM state. Superficially, therefore, one
appears confronted by a state that is neither SC or LM in
character.

There is, however, a plausible explanation: that
straight perturbation theory in U about the non-
interacting limit is intrinsically inapplicable for 1

2 < r < 1.
We believe this to be the case, for we have shown in
Section 3 that for U = 0 the ground state is SC for all
r < 1, and LM for r > 1. By contrast, finite-U NRG
studies [12,13] yield a LM ground state for r > 1

2 , with
no indication of a transition between LM and SC states
at any finite interaction strength. For 1

2 < r < 1, there-
fore, the transition between SC and LM states occurs “at”
U = 0 itself, and since the non-interacting and U > 0
ground states are of different symmetry, one anticipates
a breakdown of naive perturbation theory about the non-
interacting limit. For r < 1

2 or r > 1 by contrast, the
U = 0 ground states are the same as those for U > 0 (at
least for sufficiently small U in the case of 0 < r < 1

2 ).
Hence, as found in Sections 5.1 and 5.2, one expects low
order perturbation theory in U to be applicable over some
finite-U interval; although we naturally anticipate such to
become “dangerous” as r → 1

2− or r → 1+. Finally, we
add that we expect the behaviour just described to be par-
ticular to the symmetric model, it being known from NRG
studies [13] that the SC/LM transition in the asymmetric
case occurs at a non-vanishing interaction strength for all
r > 0.

6 Conclusion

A summary of the present work is aptly illustrated by
Figure 7 which, for the symmetric soft-gap Anderson
model, shows schematically the phase boundaries between
strong coupling (SC) and local moment (LM) phases in

the Ũ = U/∆
1

1−r
0 vs. r plane. In the non-interacting limit,

we have shown in Section 3 that for r < 1 the ground
state is SC, while for r > 1 it is LM. From finite-U NRG
studies [12,13] by contrast, it is known that the ground
state is exclusively LM for r > 1

2 . In consequence, for
r > 1, second order perturbation theory in U about the
non-interacting limit as considered in Section 5 appears
able to capture at least the initial evolution of the LM
state upon increasing U from zero, yielding in particular
the characteristic low-frequency spectral signature of the
LM phase found in NRG studies [12], viz. D(ω) ∼ |ω|r. For
1
2 < r < 1 by contrast, the U = 0 and U > 0 ground states
are fundamentally distinct, and we believe a finite-order
perturbative treatment about the non-interacting limit to
be simply inapplicable.

Perhaps the most subtle regime is r < 1
2 , encompassing

as a particular case the “normal” Anderson model, r = 0.
In Section 4, general conditions were established for a SC
state to be realized for U > 0 in the symmetric soft-gap
model considered. Physically, these amount to interactions
having no influence in renormalizing the lowest-frequency
asymptotic behaviour of the impurity spectrum D(ω),
whose behaviour as ω → 0 is that of the non-interacting

SC

LM

0.50.0

U

SC

~

r

LM

1.0

SC

Fig. 7. Schematic phase boundaries between SC and LM states

in the Ũ = U/∆
1

1−r
0 versus r plane; details in text.

limit, viz. D(ω) ∼ |ω|−r — producing the characteristic
spectral signature of the SC state observed in NRG
studies [12]. Significantly, one deduces in consequence a
pinning condition (Eq. (4.7)) upon A(ω) = |ω|rD(ω),
whereby A(ω = 0) at the Fermi level is pinned at its
non-interacting value for all U and r where a SC state
obtains, and which represents a natural generalization of
the familiar pinning condition D(ω = 0) = 1/π∆0 ∀ U
characteristic of the r = 0 Anderson model. At the level
of second order perturbation theory in U (Sect. 5.2), such
a state of affairs is realized in practice for r < 1

2 , where
the characteristic spectra A(ω) (Fig. 6) are strikingly
reminiscent of their counterparts for r = 0 (Fig. 6), with
evolving Hubbard satellites upon increasing U and the
emergence of a low-frequency Kondo scale reflected in the
progressively narrowing width of the generalized
Abrikosov-Suhl resonance in A(ω).

Figure 7 also shows clearly the limitations of finite
order perturbation theory in the interaction strength.
For r < 1

2 , NRG studies yield both SC and LM
phases [12,13], the critical line ŨC(r) diverging as r → 0,
reflecting the fact that the r = 0 Anderson model is a
Fermi liquid for all finite U ; and vanishing as r → 1

2 (al-
though whether it does so continuously as r → 1

2− we
regard as not wholly settled). It is in part this feature —
the existence of a transition between a LM state and a
SC (or generalized Fermi liquid) state — that renders the
problem of generic interest. But low order perturbation
theory, capable though it is of describing the initial evo-
lution of the SC state upon increasing U from zero, will
naturally produce a SC state for all U and cannot there-
fore delineate its boundary. To deal with this central issue,
as well as to describe successfully the regime 1

2 < r < 1,
one requires an inherently non-perturbative theory that
is capable of capturing both LM and generalized Fermi
liquid phases, and hence the transition between them. For
this, we believe a rather radical departure from conven-
tional theoretical approaches is required, and will turn to
one such in a subsequent paper [14].
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